# **Using Data Grid Technology to Manage Distributed Data**

Reagan W. Moore
University of California, San Diego
San Diego Supercomputer Center
moore@sdsc.edu
http://www.npaci.edu/DICE/



## Generic Technology Evolution

- Community specification of intent
- Identification of common infrastructure across
  - Digital libraries
  - Data grids
  - Persistent archives
- Focus on scalability and robustness of unifying infrastructure



### **Storage Resource Broker (SRB)**

User communities brokered by SDSC instances of SRB\*\*
As of 5/17/2002

| Project Instance | Data_size<br>(in GB) | Count<br>(files) | Comments                    | Funding Agency    |
|------------------|----------------------|------------------|-----------------------------|-------------------|
| NPACI            | 1,972.00             | 1,083,230        | NPACI Users                 | NSF/PACI          |
| Digsky           | 17,800.00            | 5,139,249        | 2MASS,DPOSS,NVO             | NSF/ITR           |
| DigEmbryo        | 433.00               | 31,629           | Visible Embryo              | NLM               |
| HyperLter        | 158.00               | 3,596            | HyperSpectral Images        | NSF/NPACI (ESS)   |
| Hayden           | 6,800.00             | 41,391           | FlyThrough for Planetarium  | AMNH/Hayden       |
| Portal           | 33.00                | 5,485            | Grid Portal                 | NSF/NPACI         |
| SLAC             | 514.00               | 77,168           | Protein Crystallography     | NSF/NPACI (Alpha) |
| NARA             | 7.00                 | 2,455            | Archival Documents          | NARA              |
| SIO Exp          | 19.20                | 383              | SIO Explorer Documents      | NSF/NSDL          |
| ADL              | 0.00                 | 6                | ADEPT Digital Library       | NSF/DLI2          |
| TRA              | 5.80                 | 92               | Classroom Videos            | NSF/NPACI (EOT)   |
| DTF              | 239.00               | 1,766            | DTF users                   | NSF/TCS           |
| AfCS             | 27.00                | 4,007            | Cell Signalling Images/Docs | NIH               |
| TOTAL            | 28,008.00            | 6,390,457        |                             |                   |
|                  | 28 TB                | 6.4 million      |                             |                   |

<sup>\*\*</sup> Does not cover data brokered by SRB spaces administered outside SDSC.

Does not cover databases; covers only files stored in file systems and archival storage systems



# **Topics**

- Data management systems
  - Data Grids, Digital Libraries, Persistent Archives
- Common data management technology
  - Logical name space, storage abstraction
- Collection federation
  - Knowledge management systems



## Digital Libraries

- Provide services on the data collection
  - Ingestion, loading of attribute values
  - Extensibility, definition of new attributes
  - Discovery, queries on attributes
  - Browsing, hierarchical listing
  - Presentation, formatting specified data models
- Communities
  - Digital library
  - Global Grid Forum, Databases and the Grid working group
  - OMG, Common Warehouse Metamodel



### Data Grids

- Manage data in a distributed environment
  - Logical name space, provide global identifier
  - Data access, storage system abstraction
  - Replication, disaster back up
  - Uniform access, common API across file systems, archives, and databases
  - Single sign-on, authenticate across administration domains
- Communities
  - Global Grid Forum, data grids
  - Discipline specific data management systems



### Persistent Archives

- Manage technology evolution
  - Storage system abstraction, support data migration across storage systems
  - Information repository abstraction, support catalog migration to new databases
  - Logical name space, support global persistent identifier
- Communities
  - Persistent archive community
  - Global Grid Forum, Persistent archive working group



## Common Capabilities

- Logical name space
  - Registration of digital entities
- Storage repository abstraction
  - Operations used to manipulate data in a storage system
- Information repository abstraction
  - Operations used to manipulate a catalog in a database



### Data Grid

## (Storage Resource Broker)

- Integration of collection-based management of digital entities, with
  - Remote data access through storage system abstraction
  - Catalog access through information repository abstraction
  - Automation through collection-owned data



## Storage Abstraction

- Provide common access semantics
  - Archival storage systems
  - File systems
  - Databases
- Support Unix file system operations
  - Map from the interface preferred by your application to the interfaces required by legacy storage systems
- Support database interactions
  - Map from information repository abstraction to database commands



# SDSC Storage Resource Broker & Meta-data Catalog Storage Abstraction





# Logical Name Space (Data Grid Transparencies)

- Naming transparency find a data set without knowing its name
  - Map from attributes to a global file name
- Location transparency access a data set without knowing where it is
  - Map from global file name to local file name
- Access transparency access a data set without knowing the type of storage system
  - Federated client-server architecture



## Logical Name Space Operations

### Replication

One to many mapping from logical name to physical name

#### Containers

Mapping from logical name to location in a physical container

#### Shadow links

Registration of user owned data into the collection



# SDSC Storage Resource Broker & Meta-data Catalog Logical Name Space





## Digital Entities

- Digital entities are "images of reality", made of
  - Data, the bits (zeros and ones) put on a storage system
  - Information, the attributes used to assign semantic meaning to the data
  - Knowledge, the semantic and structural relationships described by a data model
- Every digital entity requires information and knowledge to correctly interpret and display



## Types of Digital Entities

- Files
  - Physical files in the collection ID space
  - Shadow links to files in your user ID space
- Directories
  - Shadow links to directories in your user ID space
- Databases
  - Shadow links to tables
  - SQL command strings
- URLs



### Preservation

## (Similar requirements to a data grid)

- Name transparency
  - Find a file by attributes (map from attributes to global name)
- Location transparency
  - Access a file by a global identifier (map from global to local file name)
- Access transparency
  - Use same API to access data in archive or file cache
- Authenticity
  - Disaster recovery, replicate data across storage systems
  - Audit and process management



# SDSC Storage Resource Broker & Meta-data Catalog Preservation





## Convergence of Technologies

- Data grids as basis for distributed data management
  - Federation of distributed resources
  - Creation of logical name space to automate discovery
- Digital libraries
  - Discovery based on attributes
  - Hierarchical collection management
  - Extensible schema through information repository abstraction
- Persistent archives
  - Data replication
  - Persistence management



# Data Naming Ontologies

| Concept space          | Discipline concepts                     |
|------------------------|-----------------------------------------|
| Collection             | Discipline attributes                   |
| Data grid              | Global Identifier                       |
| Archive / file systems | Local file name                         |
| Data model             | Attributes that describe data structure |



## Differentiating between Data, Information, and Knowledge

#### Data

- Digital object
- Objects are streams of bits

#### Information

- Any tagged data, which is treated as an attribute.
- Attributes may be tagged data within the digital object, or tagged data that is associated with the digital object

### Knowledge

- Relationships between attributes
- Relationships can be procedural/temporal, structural/spatial, logical/semantic, functional



## Knowledge Creation Roadmap

- Knowledge syntax (consensus)
  - RDF, XMI, Topic Map
- Knowledge management (recursive operations)
  - Oracle parallel database
- Knowledge manipulation (spatial/procedural rules)
  - Generation of inference rules and mapping to data models
- Knowledge generation (scalable inference engine)
  - Application of inference rules in inference engine



## Knowledge Based Data Grid Roadmap

Ingest Management Access Services Services Relationships Knowledge Knowledge or Repository for Topic-Based Between Rules -Knowledge Query / Browse Concepts Rules (Model-based Access) XML DTD Information Attribute- based Attributes Information Repository **Semantics** Query (Data Handling System - SRB) Data Fields Storage Feature-based (Replicas, **Containers** Query Persistent IDs) **Folders** 

